AITENUATION CORRECTION IN POSITRON TOMOGRAPHY by: SIU
نویسندگان
چکیده
Accurate attenuation correction is a prerequisite for the determination of precise regional radioactivity concentrations in positron tomography. Attenuation correction can be performed using an external source of radiation and two measurements: a blank scan performed with no subject in the tomograph, and a transmission scan performed with the subject in the field of view. The ratio of blank to transmission counts gives the appropriate attenuation correction factor for each line of response. In theory. this provides a perfect correction for photon attenuation. but in practice the technique is limited by noise due to limited counting statistics and scattered radiation in the measured transmission data. In the present work. 137CS is proposed. as a suitabl~ radiation source ·for transmission measurements in 'singles' mode, a technique that substantially increases the statistical accuracy of the transmission data. 137Cs can be used without any ~calibration of the tomograph, and the spatial resolution is comparable to that obtained using 6KGe. Since 137Cs emits a monoenergetic gamma ray at 662 keV, and emission data are acquired by detecting annihilation photons of energy 511 keY, a simple extrapolation method is developed to extrapolate the attenuation coefficients measured at 662 keV to 511 keV. To eliminate scatter contamination in the transmission data, a dual-energy-window scatter correction technique is developed whereby correction can be made on-the-fly during data acquisition. Using the developed extrapolation method and dual energy scatter correction method, the linear attenuation coefficients measured in 'singles' mode using lJ7es agree well with the expected values.
منابع مشابه
Respiratory motion correction in prostate cancer positron emission tomography: A study on patients and phantom simulation
Introduction: To investigate the effects of breathing cycle and tree diaphragm motions on prostate cancer tumors standard uptake value (SUV) during positron emission tomography (PET) and to correct it. Materials and methods: Respiratory motion traces were simulated on the common patient breathing cycle and tree diaphragm motio...
متن کاملThe importance of attenuation correction for coincidence positron tomography on hybrid PET/SPECT gamma camera system
Abstract is NOT available
متن کاملEffect of scatter coincidences, partial volume, positron range and non-colinearity on the quantification of FDOPA Patlak analysis
Introduction: The key characteristics of positron emission tomography (PET) are its quantitative capability and its sensitivity, which allow the in vivo imaging of biochemical interactions with small amounts of tracer concentrations. Therefore, accurate quantification is important. However, it can be sensitive to several physical factors. The aim of this investigation is the assessment of the e...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملCalculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET) Imaging Using GEANT4 Toolkit
Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET). In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEA...
متن کامل